Copied to
clipboard

G = C62.38D4order 288 = 25·32

22nd non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.38D4, (C6×C12)⋊7C4, (C2×C62)⋊3C4, (C6×D4).25S3, (C2×C12)⋊2Dic3, C625C43C2, C329(C23⋊C4), (C22×C6)⋊4Dic3, (C22×C6).57D6, C62.105(C2×C4), C232(C3⋊Dic3), C2.5(C625C4), C32(C23.7D6), (C2×C62).12C22, C6.25(C6.D4), C22.2(C327D4), (C2×C4)⋊(C3⋊Dic3), (D4×C3×C6).12C2, C23.7(C2×C3⋊S3), (C2×D4).3(C3⋊S3), (C2×C6).14(C3⋊D4), (C2×C6).48(C2×Dic3), C22.3(C2×C3⋊Dic3), (C3×C6).73(C22⋊C4), SmallGroup(288,309)

Series: Derived Chief Lower central Upper central

C1C62 — C62.38D4
C1C3C32C3×C6C62C2×C62C625C4 — C62.38D4
C32C3×C6C62 — C62.38D4
C1C2C23C2×D4

Generators and relations for C62.38D4
 G = < a,b,c,d | a6=b6=c4=1, d2=a3, ab=ba, cac-1=a-1b3, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a3c-1 >

Subgroups: 540 in 156 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C2×D4, C3×C6, C3×C6, C2×Dic3, C2×C12, C3×D4, C22×C6, C23⋊C4, C3⋊Dic3, C3×C12, C62, C62, C62, C6.D4, C6×D4, C2×C3⋊Dic3, C6×C12, D4×C32, C2×C62, C23.7D6, C625C4, D4×C3×C6, C62.38D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C3⋊S3, C2×Dic3, C3⋊D4, C23⋊C4, C3⋊Dic3, C2×C3⋊S3, C6.D4, C2×C3⋊Dic3, C327D4, C23.7D6, C625C4, C62.38D4

Smallest permutation representation of C62.38D4
On 72 points
Generators in S72
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 17 10 9 13 5)(2 18 11 7 14 6)(3 16 12 8 15 4)(19 23 31 34 30 27)(20 24 32 35 28 25)(21 22 33 36 29 26)(37 69 52 40 72 49)(38 70 53 41 67 50)(39 71 54 42 68 51)(43 64 58 46 61 55)(44 65 59 47 62 56)(45 66 60 48 63 57)
(1 43 32 67)(2 45 33 69)(3 47 31 71)(4 62 23 54)(5 64 24 50)(6 66 22 52)(7 48 26 72)(8 44 27 68)(9 46 25 70)(10 61 28 53)(11 63 29 49)(12 65 30 51)(13 58 20 38)(14 60 21 40)(15 56 19 42)(16 59 34 39)(17 55 35 41)(18 57 36 37)
(2 3)(4 18)(5 17)(6 16)(7 8)(10 13)(11 15)(12 14)(19 22)(20 24)(21 23)(25 32)(26 31)(27 33)(28 35)(29 34)(30 36)(37 62 40 65)(38 61 41 64)(39 66 42 63)(43 70 46 67)(44 69 47 72)(45 68 48 71)(49 56 52 59)(50 55 53 58)(51 60 54 57)

G:=sub<Sym(72)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,17,10,9,13,5)(2,18,11,7,14,6)(3,16,12,8,15,4)(19,23,31,34,30,27)(20,24,32,35,28,25)(21,22,33,36,29,26)(37,69,52,40,72,49)(38,70,53,41,67,50)(39,71,54,42,68,51)(43,64,58,46,61,55)(44,65,59,47,62,56)(45,66,60,48,63,57), (1,43,32,67)(2,45,33,69)(3,47,31,71)(4,62,23,54)(5,64,24,50)(6,66,22,52)(7,48,26,72)(8,44,27,68)(9,46,25,70)(10,61,28,53)(11,63,29,49)(12,65,30,51)(13,58,20,38)(14,60,21,40)(15,56,19,42)(16,59,34,39)(17,55,35,41)(18,57,36,37), (2,3)(4,18)(5,17)(6,16)(7,8)(10,13)(11,15)(12,14)(19,22)(20,24)(21,23)(25,32)(26,31)(27,33)(28,35)(29,34)(30,36)(37,62,40,65)(38,61,41,64)(39,66,42,63)(43,70,46,67)(44,69,47,72)(45,68,48,71)(49,56,52,59)(50,55,53,58)(51,60,54,57)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,17,10,9,13,5)(2,18,11,7,14,6)(3,16,12,8,15,4)(19,23,31,34,30,27)(20,24,32,35,28,25)(21,22,33,36,29,26)(37,69,52,40,72,49)(38,70,53,41,67,50)(39,71,54,42,68,51)(43,64,58,46,61,55)(44,65,59,47,62,56)(45,66,60,48,63,57), (1,43,32,67)(2,45,33,69)(3,47,31,71)(4,62,23,54)(5,64,24,50)(6,66,22,52)(7,48,26,72)(8,44,27,68)(9,46,25,70)(10,61,28,53)(11,63,29,49)(12,65,30,51)(13,58,20,38)(14,60,21,40)(15,56,19,42)(16,59,34,39)(17,55,35,41)(18,57,36,37), (2,3)(4,18)(5,17)(6,16)(7,8)(10,13)(11,15)(12,14)(19,22)(20,24)(21,23)(25,32)(26,31)(27,33)(28,35)(29,34)(30,36)(37,62,40,65)(38,61,41,64)(39,66,42,63)(43,70,46,67)(44,69,47,72)(45,68,48,71)(49,56,52,59)(50,55,53,58)(51,60,54,57) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,17,10,9,13,5),(2,18,11,7,14,6),(3,16,12,8,15,4),(19,23,31,34,30,27),(20,24,32,35,28,25),(21,22,33,36,29,26),(37,69,52,40,72,49),(38,70,53,41,67,50),(39,71,54,42,68,51),(43,64,58,46,61,55),(44,65,59,47,62,56),(45,66,60,48,63,57)], [(1,43,32,67),(2,45,33,69),(3,47,31,71),(4,62,23,54),(5,64,24,50),(6,66,22,52),(7,48,26,72),(8,44,27,68),(9,46,25,70),(10,61,28,53),(11,63,29,49),(12,65,30,51),(13,58,20,38),(14,60,21,40),(15,56,19,42),(16,59,34,39),(17,55,35,41),(18,57,36,37)], [(2,3),(4,18),(5,17),(6,16),(7,8),(10,13),(11,15),(12,14),(19,22),(20,24),(21,23),(25,32),(26,31),(27,33),(28,35),(29,34),(30,36),(37,62,40,65),(38,61,41,64),(39,66,42,63),(43,70,46,67),(44,69,47,72),(45,68,48,71),(49,56,52,59),(50,55,53,58),(51,60,54,57)]])

51 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E6A···6L6M···6AB12A···12H
order1222223333444446···66···612···12
size11222422224363636362···24···44···4

51 irreducible representations

dim1111122222244
type+++++--++
imageC1C2C2C4C4S3D4Dic3Dic3D6C3⋊D4C23⋊C4C23.7D6
kernelC62.38D4C625C4D4×C3×C6C6×C12C2×C62C6×D4C62C2×C12C22×C6C22×C6C2×C6C32C3
# reps12122424441618

Matrix representation of C62.38D4 in GL8(𝔽13)

120000000
012000000
001120000
00100000
00001000
00000100
000000120
0000129012
,
012000000
112000000
000120000
001120000
000012000
000001200
000000120
000000012
,
08000000
80000000
00800000
00850000
00002804
000057910
00001000
000051284
,
08000000
80000000
00800000
00850000
00001000
000051200
00002804
00009230

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,1,0,9,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,2,5,1,5,0,0,0,0,8,7,0,12,0,0,0,0,0,9,0,8,0,0,0,0,4,10,0,4],[0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,5,2,9,0,0,0,0,0,12,8,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0] >;

C62.38D4 in GAP, Magma, Sage, TeX

C_6^2._{38}D_4
% in TeX

G:=Group("C6^2.38D4");
// GroupNames label

G:=SmallGroup(288,309);
// by ID

G=gap.SmallGroup(288,309);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,219,675,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=a^3,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^3*c^-1>;
// generators/relations

׿
×
𝔽